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Second Quantization of the Dirac Field: Normal
Modes in the Robertson± Walker Space-Time

Emilio Montaldi1 and Antonio Zecca1

Received June 27, 1997

The quantization of the Dirac field in the context of the Robertson±Walker space-
time is reconsidered in some of its constitutive elements. The particular solutions
of the Dirac equation previously determined are used to construct the normal
mode solutions in the case of flat, closed, and open space-time. The procedure
is based on a general standard definition of inner product between solutions of
the Dirac equation that is applied by making use of an integral property of the
separated time equation. The open-space case requires the recurrence relations
of functions associated to solutions of the Dirac equation.

1. INTRODUCTION

The Dirac equation can be formulated in a curved space time by means

of the spinor calculus (Penrose and Rindler, 1990). The formulation can be

done in general and it does not suffer from the limitations of similar equations

for higher spin values (Penrose and Rindler, 1990; Buchdahl, 1962; WuÈ nsch,
1978, 1979; Illge, 1993).

The second quantization of the Dirac field in curved space-time is also

a subject that has received great attention (Parker, 1971; Unruh, 1974; Ford,

1976) and it can be considered as a special case of the quantization of field

theory in curved space-time (Birrell and Davies, 1982; Fulling, 1989). The

quantization procedure is in general not compatible with the principle of
covariance in general relativity. This means that, in contrast to the Minkowski

space case, it depends on the choice of the coordinate system (Birrell and

Davies, 1982; Fulling, 1973). However, as in the flat-space case, it is based

on the knowledge of the normal modes associated to the solutions of the
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field equation, their existence being ensured on general grounds. Explicit

mode solutions have been considered for some specific examples of metrics

such as, for example, that of an expanding universe with Euclidean 3-space
(Parker, 1971), that of the Kerr metric for the neutrino case (Unruh, 1974),

that of the static Einstein universe (Ford, 1976), and for field equations other

than the Dirac one (Ford, 1976; Birrell and Davies, 1982; Fulling, 1973,

1989; Parker, 1969; Parker and Fulling, 1974; Hu, 1974).

The object of this paper is to determine a complete set of orthonormal

modes of the Dirac equation in the Robertson±Walker space-time. The physi-
cal situation is of interest not only because the Robertson±Walker metric is

the basis of the standard cosmology (Kolb and Turner, 1990), but also because

such a metric has an explicit time dependence that makes the corresponding

Dirac equation not directly integrable in the Newman±Penrose formalism by

the usual separation method.

The normalization procedure is applied to the solutions determined in
a previous paper (Zecca, 1996). By using the Newman±Penrose formalism

(Newman and Penrose, 1962), the problem of the solution of the Dirac

equation has been there reduced to the solution of separated equations in the

different coordinates, giving rise to a complete set of nonfactorized solutions.

The inner product in the space of the solutions of the Dirac equation,
which can be defined in a standard way on general grounds, is explicitly

calculated in the case under consideration by taking into account a formal

property of the separated time equation to which the time evolution was

reduced.

The cases of the closed and the open universe are directly treated by

elaborating the particular solutions. The open-universe case requires the study
of recurrence, differential, and integral properties of functions associated to

solutions of the Dirac equation.

2. STATEMENT OF THE PROBLEM

The problem is discussed directly in the Robertson±Walker space-time

whose line element is written as

ds2 5 dt2 2 R2(t) F dr2

1 2 ar2 1 r2(d u 2 1 sin2 u d w 2) G (a 5 0, 6 1) (1)

Besides the standard correspondence between spinors and tensors provided

by Infeld±van der Waerden quantities s a
AA8 it is also understood the use of

the specific null tetrad frame on which are based the results of Zecca, (1996).

The formulation of the Dirac equation is written in spinor form as
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¹ AA8P
A 1 i m ,QA8 5 0

(2)

¹ AA8Q
A 1 i m PA8 5 0

where ¹ AA8 are the covariant spinor derivatives and m , ! 2 the mass of the

particle Chandrasekhar, 1983). In correspondence to the solutions f % (P,
Q), c % (U, V ), one can define the spinor

J AA8( f , c ) 5 P AUA8 1 V A QA8 (3)

which is divergence-free, ¹ AA8 J
AA8 [ ¹ a J a 5 0, as a consequence of equa-

tion (2).
An inner product between the solutions of the Dirac equation can be

defined by setting

( f , c ) [ # (

J a ( f , c )( 2 g ( (x))1/2n a d ( (4)

5 # t 5 to

d3 x( 2 gt0)
1/2 s t

AA8J
AA8( f , c ) (5)

5
1

2 # t 5 t0

d3 x( 2 gt0)
1/2(P 0U 0 1 P 1U 1 1 V 0Q 0 1 V 1Q 1 (6)

because, by Gauss’ theorem (Hawking and Ellis, 1973), the expression (4)

is independent of the spacelike Cauchy hypersurface ( of volume element

d ( , n a being a future-directed unit vector orthogonal to d ( . Therefore the
product can be calculated by the more tractable expression (5) and finally

the simplest one (6), because in the null-tetrad frame under consideration the

generalized Pauli matrix s t
AA8 has the form s t

AA8 5 1±2 (1
0

0
1) (compare also with

Montaldi and Zecca, 1994)

Solutions of equation (2) can be easily obtained from the results of
Zecca (1996), by a suitable choice of a constant of integration. Without loss

of generality they can be put into the form

P 0
klm 5

S(1)
lm ( u , w )

2rR(t)
H +(r, t) H Alk(s)Tk( t ) 1 F 2 l

r
Alk(s) 2 A8lk(s) G # t

0

d t ÃTk( t Ã) J
P 1

klm 5
S(2)

lm ( u , w )

2rR(t)
H +(r, t) H 2 Alk(s)Tk( t ) 1 F 2 l

r
Alk(s) 2 A8lk(s) G # t

0

d t ÃTk( t Ã) J
Q1

klm 5
S(1)

lm ( u , w )

2rR(t)
H +(r, t) H 2 Alk(s)Tk( t ) 1 F 2 l

r
Alk(s) 2 A8lk(s) G # t

0

d t ÃTk( t Ã) J
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Q0
klm 5 2

S(2)
lm ( u , w )

2rR(t)
H +(r, t) H Alk(s)Tk( t ) 1 F 2 l

r
Alk(s) 2 A8lk(s) G # t

0

d t ÃTk( t Ã) J
(7)

The angular functions appearing in (7) are of the form S(i)
lm 5

Silm( u , w ) exp (im w ), (i 5 1, 2), where Silm( u , w ) are solutions of an eigen-

value problem originated by the solution of the angular part of (2). They are

essentially the Jacobi polynomials for | m | $ 1 with l 2 5 (l 1 1/2)2, l 5
| m | , | m | 1 1, | m | 1 2, . . . , and are essentially the Tchebicheff polynomials
for m 5 0 with l 2 5 (l 1 1)2, l 5 0, 1, 2, . . . (Zecca, 1996; Montaldi and

Zecca, 1994). The angular functions are assumed to satisfy the normaliza-

tion condition

# d V S(i)
lm( u , w )S(i)

l8m8( u , w ) 5 d ll8 d mm8 (i 5 1, 2) (8)

The function H + is connected to a particular integral of (2) and has the form

H +(r, t) 5
K +

R1/2(t) 1 1 1 ! 1 2 ar 2

r 2
l

exp(i m , ! 2t) (a 5 0, 6 1) (9)

while the conformal time parameter t and the spatial parameter s are

defined by

t (t) 5 #
t

0

dt8

R(t8)
, s(r) 5 #

r

0

dr8

! 1 2 ar82
(a 5 0, 6 1) (10)

By these variables the functions Alk(s) come out to be solutions of radial

equations and their explicit expression, as given in Zecca, (1996), will be

used in the following.

The function Tk( t ) is a solution of the separated time equation in the

conformal time parameter (Zecca, 1996)

T 9 1 2 ! 2i m ,R( t )T8 1 (2i ! 2 m ,R8( t ) 1 k2)T 5 0 (11)

where k2 is a separation constant. The solution of equation (11) is in general

difficult. It depends on the dynamical evolution of the cosmological back-

ground. In the case of the standard cosmology where R(t) is given in a

parametric form, the function R can be easily given as a function of the
conformal time parameter t (Zecca, 1997).

With regard to the concrete application of the normalization condition

(6) to the solution (7), we remark that a solution Tk( t ) of equation (11) can

always be chosen so that
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| Tk( t ) | 2 1 k2 Z # t

0

Tk( t Ã) d t ÃZ
2

5 1 (12)

as follows by a direct derivation of equation (12) with respect to t and by

the use of the expression * t
0 Tkd t Ã, which follows by a first integration of (11).

3. NORMAL MODE SOLUTIONS

The normalization procedure will be applied separately for a 5 0, 6 1.

3.1. The Flat Case a 5 0

From the definition (10) one has r 5 s and from the result of . . .

(Zecca, 1996)

Alk(r) 5 (2ikr)2 l e 2 ikr F ( l ; 2 l ; 2ikr) (13)

where F is the confluent hypergeometric function. Therefore from (7), from
the recurrence relations of the hypergeometric function, and from its expres-

sion in terms of the Bessel functions one has

P0
klm 5 S

(1)
lm ( u , w )

exp(i m , ! 2t)

R3/2(t) ! k

2r 1 J l 2 1/2(kr)Tk 2 ikJ l 1 3/2(kr) #
t

0

d t ÃTk 2
P1

klm 5 S
(2)
lm ( u , w )

exp(i m , ! 2t)

R3/2(t) ! k

2r 1 2 J l 2 1/2(kr)Tk 2 ikJ l 1 3/2(kr) #
t

0

d t ÃTk 2
QÅ 1

klm 5 S
(1)
lm ( u , w )

exp(i m , ! 2t)

R3/2(t) ! k

2r 1 2 J l 2 1/2(kr)Tk 2 ikJ l 1 3/2(kr) #
t

0

d t ÃTk 2
(14)

QÅ 0
klm 5 S

(2)
lm ( u , w )

exp(i m , ! 2t)

R3/2(t) ! k

2r 1 2 J l 2 1/2(kr)Tk 1 ikJ l 1 3/2(kr) #
t

0

d t ÃTk 2
where (k/2)1/2 is inserted for later convenience. From equation (6) it follows

that, denoting

c klm % (Pklm, Qklm),

( c klm, c k8l8m8) 5 k d ll8 d mm8 H TkTk8 #
`

0

dr rJ l 2 1/2(kr)J l 2 1/2(k8r)

1 kk8 #
`

0

dr rJ l 1 3/2(kr)J l 1 3/2(k8r) #
t

0

d t ÃTk #
t

0

d t ÃTk8 J
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5 k d ll8 d mm8 F | Tk | 2 1 k2 Z # t

0

Tk d t ÃZ
2 G d (k 2 k8)

k

5 d ll8 d mm8 d (k 2 k/) (15)

where the Bessel function closure equation (Arfken and Weber, 1995) has

been used together with the normalization assumption (12).

3.2. The Closed Case a 5 1

We have r 5 sin s (0 # s # p ) and we choose Anl(s) 5 x1/2(1 2 x) l

F( 2 2n, 2 l 1 2n 1 1; l 1 1/2; 1 2 x), where x 5 (cos s 1 1)/2 (Zecca,
1996), F being the hypergeometric function (Hawking and Ellis, 1973). [There

is a mistake in Zecca, (1996): the Anl function we have assumed does not
satisfy the constraint required there.] By using the differential formula and

the recurrence relations for the Jacobi polynomials (Abramovitz and Stegun,

1970), one gets from equations (7) and (9)

P0
nlm 5 C

S
(1)
lm ( u , w )

rR3/2(t)
exp(i m , ! 2t)[x(1 2 x)] l /2 H Tn x1/2P( l 2 1/2, l 1 1/2)

2n (2x 2 1)

1 kn(1 2 x)1/2P( l 1 1/2, l 2 1/2)
2n (2x 2 1) #

t

0

d t ÃTn J
P1

nlm 5 C
S

(2)
lm ( u , w )

rR3/2(t)
exp(i m , ! 2t)[x(1 2 x)] l /2 H 2 Tn x1/2P( l 2 1/2, l 1 1/2)

2n (2x 2 1)

1 kn(1 2 x)1/2P ( l 1 1/2, l 2 1/2)
2n (2x 2 1) #

t

0

d t ÃTn J
Q1

nlm 5 C
S

(1)
lm ( u , w )

rR3/2(t)
exp(i m , ! 2t)[x(1 2 x)] l /2 H 2 Tn x1/2P( l 2 1/2, l 1 1/2)

2n (2x 2 1)

1 kn(1 2 x)1/2P ( l 1 1/2, l 2 1/2)
2n (2x 2 1) #

t

0

d t ÃTn J
Q0

nlm 5 C
S

(1)
lm ( u , w )

rR3/2(t)
exp(i m , ! 2t)[x(1 2 x)] l /2 H 2 Tn x1/2P( l 2 1/2, l 1 1/2)

2n (2x 2 1)

2 kn(1 2 x)1/2P ( l 1 1/2, l 2 1/2)
2n (2x 2 1) #

t

0

d t ÃTn J (16)
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where x 5 (cos s 1 1)/2 and we set

kn 5 2 l 1 2n 1 1, C 5
((2n)!)1/2 G 1/2(kn 1 l 1 1/2)

G (kn)
(17)

Therefore, denoting c nlm % (Pnlm, Qnlm), we have

( c nlm, c n8l8m8)

5
| C | 2

2 l d ll8 d mm8 H TnTn8 #
1

2 1

dy (1 2 y) l 2 1/2(1 1 y) l 1 1/2

3 P( l 2 1/2, l 1 1/2)
2n (y)P( l 2 1/2, l 1 1/2)

2n (y)

1 #
t

0

d t Tn #
t

0

d t Tn8 #
1

2 1

dy (1 2 y) l 1 1/2(1 1 y) l 2 1/2

3 P ( l 1 1/2, l 2 1/2)
2n (y)P ( l 1 1/2, l 2 1/2)

2n8 (y) J
5 2 | C | 2 d ll8 d mm8

G (2n 1 l 1 1/2) G (2n 1 l 1 3/2)

(4n 1 2 l 1 1)(2n)! G (2n 1 2 l 1 1)

3 H | Tn( t ) | 2 1 k2
n Z # t

0

Tn d t ÃZ
2

J d nn8

5 d nn8 d ll8 d mm8 (18)

3.3. The Open Case a 5 2 1

Here r 5 sinh s and

Alk 5 ix1/2(1 2 x) l F( l 1 1±2 1 ik, l 1 1±2 2 ik; l 1 1±2 ; 1 2 x)

with x 5 (cosh s 1 1)/2 (Zecca, 1996). By using the derivation and the

recurrence relation properties of the hypergeometric function, one gets

P 0
klm > S

(1)
lm

exp(i m , ! 2t)

rR3/2(t)
(x2 2 x) l /2

3 H Tk x1/2F 1 l 1
1

2
1 ik, l 1

1

2
2 ik; l 1

1

2
; 1 2 x 2

2 (x 2 1)1/2 k2

l 1 1/2
F 1 l 1

1

2
1 ik, l 1

1

2
2 ik;
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l 1
3

2
; 1 2 x 2 #

t

0

d t Tk J
P 1

klm > S
(2)
lm

exp(i m , ! 2t)

rR3/2(t)
(x2 2 x) l /2

3 H 2 Tkx
1/2F 1 l 1

1

2
1 ik, l 1

1

2
2 ik; l 1

1

2
; 1 2 x 2

2 (x 2 1)1/2 k2

l 1 1/2
F 1 l 1

1

2
1 ik, l 1

1

2
2 ik;

l 1
3

2
; 1 2 x 2 #

t

0

d t Tk J
Q 1

klm > S
(1)
lm

exp(i m , ! 2t)

rR3/2(t)
(x2 2 x) l /2

3 H 2 Tk x1/2F 1 l 1
1

2
1 ik, l 1

1

2
2 ik; l 1

1

2
; 1 2 x 2

2 (x 2 1)1/2 k2

l 1 1/2
F 1 l 1

1

2
1 ik, l 1

1

2
2 ik;

l 1
3

2
; 1 2 x 2 #

t

0

d t ÃTk J
Q 0

klm > S
(2)
lm

exp(i m , ! 2t)

rR3/2(t)
(x2 2 x) l /2

3 H 2 Tk x1/2F 1 l 1
1

2
1 ik, l 1

1

2
2 ik; l 1

1

2
; 1 2 x 2

1 (x 2 1)1/2 k2

l 1 1/2
F 1 l 1

1

2
1 ik, l 1

1

2
2 ik;

(19)l 1
3

2
; 1 2 x 2 #

t

0

d t ÃTk J
One has to distinguish between the two possible kinds of value of l . Consider
first the subcase of integer l : a 5 2 1, l 5 l 1 1 (l 5 0, 1, 2, 3 . . .).



Second Quantization of the Dirac Field 1003

From the differentiation formula and elementary cases of the hypergeometric

function and the assumption on l one gets from (19)

P 0
klm 5 DS

(1)
lm

exp(i m , ! 2t

rR3/2(t) H Tk( t )q l (s, k) 2 kp l (s, k) #
t

0

d t ÃTk J
P 1

klm 5 DS
(2)
lm

exp(i m , ! 2t)

rR3/2(t) H 2 Tk( t )q l (s, k) 2 kp l (s, k) #
t

0

d t ÃTk J (20)

Q 1
klm 5 DS

(1)
lm

exp(i m , ! 2t)

rR3/2(t) H 2 Tk( t )q l (s, k) 2 kp l (s, k) #
t

0

d t ÃTk J
Q 0

klm 5 DS
(2)
lm

exp(i m , ! 2t)

rR3/2(t) H 2 Tk( t )q l (s, k) 1 kp l (s, k) #
t

0

d t ÃTk J
where we have set

D 5 H p F k2 1 1 12 2 2 G F k2 1 1 32 2
2

G ? ? ? F k2 1 1 l 2
1

2 2
2

G J
2 1/2

(21)

q l (s, k) 5 (sinh s) l cosh
s

2 1 d

d cosh s 2
l

cos ks

cosh(s/2)
(22)

p l (s, k) 5 (sinh s) l sinh
s

2 1 d

d cosh s 2
l

sin ks

sinh(s/2)
( l 5 l 1 1) (23)

The functions q l , p l satisfy a suitable set of recurrence, integral, and differen-
tial relations as shown in the Appendix. By means of the result in the Appendix

one has

( c klm, c k8l8m8) 5 2 | D | 2 d ll8 d mm8 H TkTk8 #
`

0

ds q l (s, k)q l (s, k8)

1 kk8 #
t

0

d t ÃTk #
t

0

d t ÃTk8 #
`

0

ds p l (s, k)p l (s, k8) J
5 2 | D | 2 F k2 1 1 l 2

1

2 2
2

G F k2 1 1 l 2
3

2 2
2

G ? ? ? F k2 1 1 12 2
2

G
3 1 | Tk( t ) | 2 1 k2 Z # t

0

Tk( t Ã) d t ÃZ
2

2



1004 Montaldi and Zecca

3 #
`

0

ds q0(s, k)q0(s, k8) d ll8 d mm8

5 d ll8 d mm8 d (k 2 k8) (24)

Consider now the subcase of half-integer l : a 5 2 1, l 5 l 1 1±2 (l 5
0, 1, 2, 3, . . .). From the properties of the hypergeometric function and from

(19) one gets

P 0
klm 5 ES

(1)
lm

exp(i m , ! 2t)

rR3/2(t) H Tk( t ) fl(s, k) 2 k2gl(s, k) #
t

0

d t ÃTk J
P 1

klm 5 ES
(2)
lm

exp(i m , ! 2t)

rR3/2(t) H 2 Tk( t ) fl(s, k) 2 k2gl(s, k) #
t

0

d t ÃTk J
(25)Q 1

klm 5 ES
(1)
lm

exp(i m , ! 2t)

rR3/2(t) H 2 Tk( t ) fl(s, k) 2 k2gl(s, k) #
t

0

d t ÃTk J
Q 0

klm 5 ES
(2)
lm

exp(i m , ! 2t)

rR3/2(t) H 2 Tk( t ) fl (s, k) 1 k2gl (s, k) #
t

0

d t ÃTk J
where the functions fl , gl and the constant E have been defined by

fl (s, k) 5 (sinh s)l 1 1/2 cosh
s

2 1 d

d cosh s 2
l

F 1 1 1 ik, 1 2 ik; 1; 2 sinh2 s

2 2 (26)

gl (s, k) 5 (sinh s)l 1 1/2 sinh
s

2 1 d

d cosh s 2
l

F 1 1 1 ik, 1 2 ik; 2; 2 sinh2 s

2 2 (27)

E 5 1 2k

tanh p k 2
1/2

{[k2 1 l 2][k2 1 (l 2 1)2] . . . [k2 1 1]} 2 1/2 (28)

From the results in the Appendix concerning the functions fl, gl one has

( c klm, c k8l8m8) 5 2 | E | 2 d ll8 d mm8 H TkTk8 #
`

0

ds fl(s, k)fl (s, k8)

1 kk8 #
t

0

d t ÃTk #
t

0

d t ÃTk8 #
`

0

ds gl (s, k)gl (s, k8) J
5 2 | E | 2[k2 1 l2][k2 1 (l 2 1)2] . . . [k2 1 1] (29)

3 1 | Tk( t ) | 2 1 k2 Z # t

0

Tk( t Ã) d t ÃZ
2

2
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3 #
`

0

ds f0(s, k)f0(s, k8) d ll8 d mm8

5 d ll8 d mm8 d (k 2 k8)

APPENDIX

The functions q l (s, k) defined in equation (22) satisfy the following

properties (compare with Dolginov and Toptygin, 1960; Bander and Itzyk-

son, 1966)

q l 1 1 5 F d

ds
2 l coth s 2

1

2
tanh

s

2 G q l (A1)

F k2 1 1 l 2
1

2 2
2

G q l 2 1 5 2 F d

ds
1 ( l 2 1) coth s 1

1

2
tanh

s

2 G q l (A2)

F d2

ds2 1 k2 2
l ( l 2 1)

sinh2s
1

l
2cosh2s/2 G q l 5 0 (A3)

To prove these relations, it suffices to prove that equation (A3) holds, because

(A1) is a direct consequence of the definition (22), (A1) 1 (A2) imply (A3),

and (A1) 1 (A3) imply (A2). To that end, by setting q l 5 u(s)(sinh s) l

cosh(s/2) in equation (A3) and then t 5 (1 2 cosh s)/2 5 2 sinh2(s/2) in the
resulting equation for u, one gets the equation

t(1 2 t)
d2u

dt2 1 F l 1
1

2
2 (2 l 1 2)t G du

dt
2 F k2 1 1 l 1

1

2 2
2

G u 5 0 (A4)

the solution of which is therefore

u 5 F 1 l 1
1

2
1 ik; l 1

1

2
2 ik; l 1

1

2
; t 2

> 1 d

dt 2
l

F 1 12 1 ik;
1

2
2 ik;

1

2
; 2 sinh2 s

2 2
> 1 d

d cosh s 2
l

1 cos ks/cosh
s

2 2 (A5)

Using the recurrence relations just proved, and integrating by parts, one

gets also
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#
`

0

ds q l (s, k)q l (s, k8)

5 #
`

0

ds q l (s, k) F d

ds
2 ( l 2 1) coth s 2

1

2
tanh

s

2 G q l 2 1(s, k8)

5 #
`

0

ds q l 2 1(s, k8) F 2
d

ds
2 ( l 2 1)coth s 2

1

2
tanh

s

2 G q l (s, k)

5 F k2 1 1 l 2
1

2 2
2

G # `

0

ds q l 2 1(s, k)q l 2 1(s, k8)

5 F k2 1 1 l 2
1

2 2
2

G F k2 1 1 l 2
3

2 2
2

G . . .

3 F k2 1 1 12 2
2

G # `

0

ds cos ks cos k8s

5 F k2 1 1 l 2
1

2 2
2

G F k2 1 1 l 2
3

2 2
2

G . . .

3 F k2 1 1 12 2
2

G p
2

d (k 2 k8) (A6)

By similar procedures one can show that the functions p l (s, k) defined in
(23) satisfy the properties

p l 1 1 5 F d

ds
2 l coth s 2

1

2
coth

s

2 G p l (A7)

F k2 1 1 l 2
1

2 2
2

G p l 2 1 5 2 F d

ds
1 ( l 2 1) coth s 1

1

2
coth

s

2 G p l (A8)

F d2

ds2 1 k2 2
l ( l 2 1)

sinh2s
2

l
2 sinh2s/2 G p l 5 0 (A9)

and that their integral property is the same as that of the q l (s, k):

#
`

0

dsp l (s, k)p l (s, k8)

5 F k2 1 1 l 2
1

2 2
2

G F k2 1 1 l 2
3

2 2
2

G . . . F k2 1 1 12 2
2

G # `

0

ds sinks sin k8s(A10)
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5 F k2 1 1 l 2
1

2 2
2

G F k2 1 1 l 2
3

2 2
2

G . . . F k2 1 1 12 2
2

G p
2

d (k 2 k8) (A11)

The previous procedures can be extended to prove that the functions fl, gl

defined in equations (26) and (27) have the properties

fl 1 1 5 F d

ds
2 1 l 1

1

2 2 coth s 2
1

2
tanh

s

2 G fl (A12)

[k2 1 l2] fl 2 1 5 2 F d

ds
1 1 l 2

1

2 2 coth s 1
1

2
tanh

s

2 G fl (A13)

F d2

ds2 1 k2 2
l2 2 1/4

sinh2s
1

2l 1 1

4cosh2(s/2) G fl 5 0 (A14)

and

gl 1 1 5 F d

ds
2 1 l 1

1

2 2 coth s 2
1

2
coth

s

2 G gl (A15)

[k2 1 l2] gl 2 1 5 2 F d

ds
1 1 l 2

1

2 2 coth s 1
1

2
coth

s

2 G gl (A16)

F d2

ds2 1 k2 2
l2 2 1/4

sinh2s
2

2l 1 1

4sinh2(s/2) G gl 5 0 (A17)

and

#
`

0

ds fl(s, k) fl (s, k8)

5 [k2 1 l2][k2 1 (l 2 1)2] . . . [k2 1 1]

3 #
`

0

ds f0(s, k) f0(s, k8) (A18)

#
`

0

ds gl (s, k)gl (s, k8)

5 [k2 1 l2][k2 1 (l 2 1)2] . . . [k2 1 1]

3 #
`

0

ds g0(s, k)g0(s, k8) (A19)



1008 Montaldi and Zecca

By using a linear transformation formula and a differentiation formula for

the hypergeometric function one has

#
`

0

ds f0(s, k) f0(s, k8) 5
1

k2 #
`

0

ds g0(s, k)g0(s, k8) (A20)

From equation (A14) one gets

(k2 2 k82) #
a

0

ds f0(s, k) f0(s, k8)

5 [ f 80(s, k) f0(s, k8) 2 f 80(s, k8) f0(s, k)]a
0 (A21)

and finally, from the asymptotic behavior of the hypergeometric function

one gets

#
a

0

ds f0(s, k)f0(s, k8) ® 2 Z G (2ik)

G (1 1 ik) G (ik) Z
2

sin(k8 2 k)a

k8 2 k

® (2k) 2 1 tanh p k d (k8 2 k) (A22)

for a ® ` .
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